Lecture 12: Key-Agreement and Public-key Encryption

・ロト ・回 ・ ・ ヨト ・ Lecture 12: Key-Agreement and Public-key Encryption

-

э

• A group G is defined by a set of elements and an operation which maps two elements in the set to a third element

-

- A group G is defined by a set of elements and an operation which maps two elements in the set to a third element
- (G, \bullet) is a group if it satisfies the following conditions:

- A group G is defined by a set of elements and an operation which maps two elements in the set to a third element
- (G, \bullet) is a group if it satisfies the following conditions:
 - Closure: For all $a, b \in G$, we have $a \bullet b \in G$

- A group G is defined by a set of elements and an operation which maps two elements in the set to a third element
- (G, \bullet) is a group if it satisfies the following conditions:
 - Closure: For all $a, b \in G$, we have $a \bullet b \in G$
 - Associativity: For all a, b, c ∈ G, we have
 (a b) c = a (b c)

- A group G is defined by a set of elements and an operation which maps two elements in the set to a third element
- (G, \bullet) is a group if it satisfies the following conditions:
 - Closure: For all $a, b \in G$, we have $a \bullet b \in G$
 - Associativity: For all a, b, c ∈ G, we have
 (a b) c = a (b c)
 - Identity: There exists an element e such that for all a ∈ G, we have e a = a

- A group G is defined by a set of elements and an operation which maps two elements in the set to a third element
- (G, \bullet) is a group if it satisfies the following conditions:
 - Closure: For all $a, b \in G$, we have $a \bullet b \in G$
 - Associativity: For all a, b, c ∈ G, we have
 (a b) c = a (b c)
 - Identity: There exists an element e such that for all a ∈ G, we have e a = a
 - Inverse: For every $a \in G$, there exists $b \in G$ such that $a \bullet b = e$

- A group G is defined by a set of elements and an operation which maps two elements in the set to a third element
- (G, \bullet) is a group if it satisfies the following conditions:
 - Closure: For all $a, b \in G$, we have $a \bullet b \in G$
 - Associativity: For all a, b, c ∈ G, we have
 (a b) c = a (b c)
 - Identity: There exists an element e such that for all a ∈ G, we have e a = a
 - Inverse: For every $a \in G$, there exists $b \in G$ such that $a \bullet b = e$
- Think: Is $a \bullet b$ always equal to $b \bullet a$?

- A group G is defined by a set of elements and an operation which maps two elements in the set to a third element
- (G, \bullet) is a group if it satisfies the following conditions:
 - Closure: For all $a, b \in G$, we have $a \bullet b \in G$
 - Associativity: For all a, b, c ∈ G, we have
 (a b) c = a (b c)
 - Identity: There exists an element e such that for all a ∈ G, we have e a = a
 - Inverse: For every $a \in G$, there exists $b \in G$ such that $a \bullet b = e$
- Think: Is $a \bullet b$ always equal to $b \bullet a$?
 - Read: Abelian Groups

- A group G is defined by a set of elements and an operation which maps two elements in the set to a third element
- (G, \bullet) is a group if it satisfies the following conditions:
 - Closure: For all $a, b \in G$, we have $a \bullet b \in G$
 - Associativity: For all a, b, c ∈ G, we have
 (a b) c = a (b c)
 - Identity: There exists an element e such that for all a ∈ G, we have e a = a
 - Inverse: For every $a \in G$, there exists $b \in G$ such that $a \bullet b = e$
- Think: Is $a \bullet b$ always equal to $b \bullet a$?
 - Read: Abelian Groups
- Think: Can there be different left and right identity elements?

- A group G is defined by a set of elements and an operation which maps two elements in the set to a third element
- (G, \bullet) is a group if it satisfies the following conditions:
 - Closure: For all $a, b \in G$, we have $a \bullet b \in G$
 - Associativity: For all a, b, c ∈ G, we have
 (a b) c = a (b c)
 - Identity: There exists an element e such that for all a ∈ G, we have e a = a
 - Inverse: For every $a \in G$, there exists $b \in G$ such that $a \bullet b = e$
- Think: Is $a \bullet b$ always equal to $b \bullet a$?
 - Read: Abelian Groups
- Think: Can there be different left and right identity elements?
- Think: Can there be different left and right inverses?

- A group G is defined by a set of elements and an operation which maps two elements in the set to a third element
- (G, \bullet) is a group if it satisfies the following conditions:
 - Closure: For all $a, b \in G$, we have $a \bullet b \in G$
 - Associativity: For all a, b, c ∈ G, we have
 (a b) c = a (b c)
 - Identity: There exists an element e such that for all a ∈ G, we have e a = a
 - Inverse: For every $a \in G$, there exists $b \in G$ such that $a \bullet b = e$
- Think: Is $a \bullet b$ always equal to $b \bullet a$?
 - Read: Abelian Groups
- Think: Can there be different left and right identity elements?
- Think: Can there be different left and right inverses?
- Example: $(\mathbb{Z}, +)$

- A group G is defined by a set of elements and an operation which maps two elements in the set to a third element
- (G, \bullet) is a group if it satisfies the following conditions:
 - Closure: For all $a, b \in G$, we have $a \bullet b \in G$
 - Associativity: For all a, b, c ∈ G, we have
 (a b) c = a (b c)
 - Identity: There exists an element e such that for all a ∈ G, we have e a = a
 - Inverse: For every $a \in G$, there exists $b \in G$ such that $a \bullet b = e$
- Think: Is $a \bullet b$ always equal to $b \bullet a$?
 - Read: Abelian Groups
- Think: Can there be different left and right identity elements?
- Think: Can there be different left and right inverses?
- Example: $(\mathbb{Z}, +)$
- Read: (Example) Symmetry Group

• A group (G, ·) is a cyclic group if it is generated by a single element

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• A group (G, \cdot) is a cyclic group if it is generated by a single element

• That is:
$$G = \{1 = e = g^0, g^1, \dots, g^{n-1}\}$$
, where $|G| = n$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- A group (G, \cdot) is a cyclic group if it is generated by a single element
- That is: $G = \left\{1 = e = g^0, g^1, \dots, g^{n-1}\right\}$, where |G| = n
- Written as: $G = \langle g \rangle$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うへつ

- A group (G, \cdot) is a cyclic group if it is generated by a single element
- That is: $G = \left\{1 = e = g^0, g^1, \dots, g^{n-1}\right\}$, where |G| = n
- Written as: $G = \langle g \rangle$
- Order of G: n

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うへつ

• Let (G, \cdot) be a cyclic group of order 2^n with generator g

- Let (G, \cdot) be a cyclic group of order 2^n with generator g
- Given $(g, b = g^a)$, where $a \stackrel{\$}{\leftarrow} \{0, \dots, 2^n 1\}$, it is hard to predict a

• Let G be a cyclic group (G, \cdot) or order 2^n with generator g

Lecture 12: Key-Agreement and Public-key Encryption

- Let G be a cyclic group (G, \cdot) or order 2^n with generator g
- Give (g, g^a, g^b) to the adversary

- Let G be a cyclic group (G, \cdot) or order 2^n with generator g
- Give (g, g^a, g^b) to the adversary
- Hard to find g^{ab}

• Let (G, \cdot) be a cyclic group of order 2^n with generator g

・ロト ・四ト ・ヨト ・ヨト Lecture 12: Key-Agreement and Public-key Encryption

э

Let (G, ·) be a cyclic group of order 2ⁿ with generator g
Pick b ^s {0,1}

- Let (G, ·) be a cyclic group of order 2ⁿ with generator g
 Pick b ^{\$} {0,1}
- If b = 0, send (g, g^a, g^b, g^{ab}) , where $a, b \stackrel{\$}{\leftarrow} \{0, \dots, 2^n 1\}$

- Let (G, ·) be a cyclic group of order 2ⁿ with generator g
 Pick b ^s {0,1}
- If b = 0, send (g, g^a, g^b, g^{ab}) , where $a, b \stackrel{\$}{\leftarrow} \{0, \dots, 2^n 1\}$
- If b = 1, send (g, g^a, g^b, g^r) , where $a, b, r \stackrel{\$}{\leftarrow} \{0, \dots, 2^n 1\}$

- Let (G, ·) be a cyclic group of order 2ⁿ with generator g
 Pick b ^s {0,1}
- If b = 0, send (g, g^a, g^b, g^{ab}) , where $a, b \stackrel{\$}{\leftarrow} \{0, \dots, 2^n 1\}$
- If b = 1, send (g, g^a, g^b, g^r) , where $a, b, r \stackrel{\$}{\leftarrow} \{0, \dots, 2^n 1\}$
- Adversary has to guess b

- Let (G, ·) be a cyclic group of order 2ⁿ with generator g
 Pick b ^s {0,1}
- If b = 0, send (g, g^a, g^b, g^{ab}) , where $a, b \stackrel{\$}{\leftarrow} \{0, \dots, 2^n 1\}$
- If b = 1, send (g, g^a, g^b, g^r) , where $a, b, r \stackrel{\$}{\leftarrow} \{0, \dots, 2^n 1\}$
- Adversary has to guess b
- Effectively: $(g, g^a, g^b, g^{ab}) \approx (g, g^a, g^b, g^r)$, for $a, b, r \stackrel{\$}{\leftarrow} \{0, \dots, 2^n - 1\}$ and any g

Relationship

(日) (四) (三) (三) (三) Lecture 12: Key-Agreement and Public-key Encryption

æ

$DDH \implies CDH \implies DL$

・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・ Lecture 12: Key-Agreement and Public-key Encryption

æ

Key Agreement: Definition

• Alice picks a local randomness r_A

Key Agreement: Definition

- Alice picks a local randomness r_A
- Bob picks a local randomness r_B

Lecture 12: Key-Agreement and Public-key Encryption

- Alice picks a local randomness r_A
- Bob picks a local randomness r_B
- $\bullet\,$ Alice and Bob engage in a protocol and generate the transcript τ

- Alice picks a local randomness r_A
- Bob picks a local randomness r_B
- $\bullet\,$ Alice and Bob engage in a protocol and generate the transcript τ
- Alice's view $V_A = (r_A, \tau)$ and Bob's view $V_B = (r_B, \tau)$

- Alice picks a local randomness r_A
- Bob picks a local randomness r_B
- \bullet Alice and Bob engage in a protocol and generate the transcript τ
- Alice's view $V_A = (r_A, \tau)$ and Bob's view $V_B = (r_B, \tau)$
- Eavesdropper's view $V_E = au$

- Alice picks a local randomness r_A
- Bob picks a local randomness r_B
- \bullet Alice and Bob engage in a protocol and generate the transcript τ
- Alice's view $V_A = (r_A, \tau)$ and Bob's view $V_B = (r_B, \tau)$
- Eavesdropper's view $V_E = au$
- Alice outputs k_A as a function of V_A and Bob outputs k_B as a function of V_B

- Alice picks a local randomness r_A
- Bob picks a local randomness r_B
- \bullet Alice and Bob engage in a protocol and generate the transcript τ
- Alice's view $V_A = (r_A, \tau)$ and Bob's view $V_B = (r_B, \tau)$
- Eavesdropper's view $V_E = au$
- Alice outputs k_A as a function of V_A and Bob outputs k_B as a function of V_B
- Correctness: $\Pr_{r_A,r_B}[k_A=k_B] pprox 1$

- Alice picks a local randomness r_A
- Bob picks a local randomness r_B
- \bullet Alice and Bob engage in a protocol and generate the transcript τ
- Alice's view $V_A = (r_A, \tau)$ and Bob's view $V_B = (r_B, \tau)$
- Eavesdropper's view $V_E = au$
- Alice outputs k_A as a function of V_A and Bob outputs k_B as a function of V_B
- Correctness: $\Pr_{r_A, r_B}[k_A = k_B] \approx 1$
- Security: $(k_A, V_E) \equiv (k_B, \tau) \approx (r, \tau)$

• Let (G, \cdot) be a cyclic group of order 2^n with generator g

Lecture 12: Key-Agreement and Public-key Encryption

э

Let (G, ·) be a cyclic group of order 2ⁿ with generator g
Alice picks a ^{\$} {0,..., 2ⁿ − 1} and sends g^a to Bob

<ロ> (四) (四) (三) (三) (三) (三)

- Let (G, \cdot) be a cyclic group of order 2^n with generator g
- Alice picks $a \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \{0,\ldots,2^n-1\}$ and sends g^a to Bob
- Bob picks $b \stackrel{\hspace{0.4mm}{\scriptsize\leftarrow}}{\leftarrow} \{0,\ldots,2^n-1\}$ and sends g^b to Alice

- Let (G, \cdot) be a cyclic group of order 2^n with generator g
- Alice picks $a \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \{0,\ldots,2^n-1\}$ and sends g^a to Bob
- Bob picks $b \stackrel{\$}{\leftarrow} \{0, \dots, 2^n 1\}$ and sends g^b to Alice
- Alice outputs $(g^b)^a$ and Bob outputs $(g^a)^b$

- Let (G, \cdot) be a cyclic group of order 2^n with generator g
- Alice picks $a \stackrel{\hspace{0.4mm} {}\raisebox{0.4mm}{\scriptstyle{\leftarrow}}}{\leftarrow} \{0,\ldots,2^n-1\}$ and sends g^a to Bob
- Bob picks $b \stackrel{\hspace{0.4mm} {\scriptscriptstyle\bullet}}{\leftarrow} \{0,\ldots,2^n-1\}$ and sends g^b to Alice
- Alice outputs $(g^b)^a$ and Bob outputs $(g^a)^b$
- Adversary sees: (g^a, g^b)

- Let (G, \cdot) be a cyclic group of order 2^n with generator g
- Alice picks $a \stackrel{\hspace{0.4mm} {}\raisebox{0.4mm}{\scriptstyle{\bullet}}}{\leftarrow} \{0,\ldots,2^n-1\}$ and sends g^a to Bob
- Bob picks $b \stackrel{\hspace{0.4mm}{\scriptsize\leftarrow}}{\leftarrow} \{0,\ldots,2^n-1\}$ and sends g^b to Alice
- Alice outputs $(g^b)^a$ and Bob outputs $(g^a)^b$
- Adversary sees: (g^a, g^b)
- Correctness?

- Let (G, \cdot) be a cyclic group of order 2^n with generator g
- Alice picks $a \stackrel{\hspace{0.4mm} {}\raisebox{0.4mm}{\scriptstyle{\bullet}}}{\leftarrow} \{0,\ldots,2^n-1\}$ and sends g^a to Bob
- Bob picks $b \stackrel{\$}{\leftarrow} \{0, \dots, 2^n 1\}$ and sends g^b to Alice
- Alice outputs $(g^b)^a$ and Bob outputs $(g^a)^b$
- Adversary sees: (g^a, g^b)
- Correctness?
- Security? Use DDH to say that g^{ab} is perfectly hidden from it

• Key Generation: Alice generates $(sk, pk) \xleftarrow{\$} \text{Gen}(1^n)$

э

- Key Generation: Alice generates $(sk, pk) \stackrel{\$}{\leftarrow} \text{Gen}(1^n)$
- Alice announces *pk*

- Key Generation: Alice generates $(sk, pk) \stackrel{s}{\leftarrow} \text{Gen}(1^n)$
- Alice announces pk
- Encryption: Bob computes $c \stackrel{\$}{\leftarrow} Enc(m, pk)$

(日) (同) (三)

- Key Generation: Alice generates $(sk, pk) \stackrel{s}{\leftarrow} \text{Gen}(1^n)$
- Alice announces pk
- Encryption: Bob computes $c \stackrel{\$}{\leftarrow} Enc(m, pk)$
- Correctness: Alice computes m = Dec(c, sk)

- Key Generation: Alice generates $(sk, pk) \stackrel{\$}{\leftarrow} \text{Gen}(1^n)$
- Alice announces pk
- Encryption: Bob computes $c \stackrel{\$}{\leftarrow} Enc(m, pk)$
- Correctness: Alice computes m = Dec(c, sk)
- Security: Given (pk, c) the message seems uniformly random

• Use the key as a one-time pad

э

- Use the key as a one-time pad
- Formalize this intuition

э