Lecture 12: Key-Agreement and Public-key Encryption

Groups

- A group G is defined by a set of elements and an operation which maps two elements in the set to a third element
- A group G is defined by a set of elements and an operation which maps two elements in the set to a third element
- (G, \bullet) is a group if it satisfies the following conditions:
- A group G is defined by a set of elements and an operation which maps two elements in the set to a third element
- (G, \bullet) is a group if it satisfies the following conditions:
- Closure: For all $a, b \in G$, we have $a \bullet b \in G$

Groups

- A group G is defined by a set of elements and an operation which maps two elements in the set to a third element
- (G, \bullet) is a group if it satisfies the following conditions:
- Closure: For all $a, b \in G$, we have $a \bullet b \in G$
- Associativity: For all $a, b, c \in G$, we have $(a \bullet b) \bullet c=a \bullet(b \bullet c)$

Groups

- A group G is defined by a set of elements and an operation which maps two elements in the set to a third element
- (G, \bullet) is a group if it satisfies the following conditions:
- Closure: For all $a, b \in G$, we have $a \bullet b \in G$
- Associativity: For all $a, b, c \in G$, we have $(a \bullet b) \bullet c=a \bullet(b \bullet c)$
- Identity: There exists an element e such that for all $a \in G$, we have $e \cdot a=a$

Groups

- A group G is defined by a set of elements and an operation which maps two elements in the set to a third element
- (G, \bullet) is a group if it satisfies the following conditions:
- Closure: For all $a, b \in G$, we have $a \bullet b \in G$
- Associativity: For all $a, b, c \in G$, we have $(a \bullet b) \bullet c=a \bullet(b \bullet c)$
- Identity: There exists an element e such that for all $a \in G$, we have $e \cdot a=a$
- Inverse: For every $a \in G$, there exists $b \in G$ such that $a \bullet b=e$

Groups

- A group G is defined by a set of elements and an operation which maps two elements in the set to a third element
- (G, \bullet) is a group if it satisfies the following conditions:
- Closure: For all $a, b \in G$, we have $a \bullet b \in G$
- Associativity: For all $a, b, c \in G$, we have $(a \bullet b) \bullet c=a \bullet(b \bullet c)$
- Identity: There exists an element e such that for all $a \in G$, we have $e \cdot a=a$
- Inverse: For every $a \in G$, there exists $b \in G$ such that $a \bullet b=e$
- Think: Is $a \bullet b$ always equal to $b \bullet a$?
- A group G is defined by a set of elements and an operation which maps two elements in the set to a third element
- (G, \bullet) is a group if it satisfies the following conditions:
- Closure: For all $a, b \in G$, we have $a \bullet b \in G$
- Associativity: For all $a, b, c \in G$, we have $(a \bullet b) \bullet c=a \bullet(b \bullet c)$
- Identity: There exists an element e such that for all $a \in G$, we have $e \cdot a=a$
- Inverse: For every $a \in G$, there exists $b \in G$ such that $a \bullet b=e$
- Think: Is $a \bullet b$ always equal to $b \bullet a$?
- Read: Abelian Groups
- A group G is defined by a set of elements and an operation which maps two elements in the set to a third element
- (G, \bullet) is a group if it satisfies the following conditions:
- Closure: For all $a, b \in G$, we have $a \bullet b \in G$
- Associativity: For all $a, b, c \in G$, we have $(a \bullet b) \bullet c=a \bullet(b \bullet c)$
- Identity: There exists an element e such that for all $a \in G$, we have $e \cdot a=a$
- Inverse: For every $a \in G$, there exists $b \in G$ such that $a \bullet b=e$
- Think: Is $a \bullet b$ always equal to $b \bullet a$?
- Read: Abelian Groups
- Think: Can there be different left and right identity elements?
- A group G is defined by a set of elements and an operation which maps two elements in the set to a third element
- (G, \bullet) is a group if it satisfies the following conditions:
- Closure: For all $a, b \in G$, we have $a \bullet b \in G$
- Associativity: For all $a, b, c \in G$, we have $(a \bullet b) \bullet c=a \bullet(b \bullet c)$
- Identity: There exists an element e such that for all $a \in G$, we have $e \bullet a=a$
- Inverse: For every $a \in G$, there exists $b \in G$ such that $a \bullet b=e$
- Think: Is $a \bullet b$ always equal to $b \bullet a$?
- Read: Abelian Groups
- Think: Can there be different left and right identity elements?
- Think: Can there be different left and right inverses?
- A group G is defined by a set of elements and an operation which maps two elements in the set to a third element
- (G, \bullet) is a group if it satisfies the following conditions:
- Closure: For all $a, b \in G$, we have $a \bullet b \in G$
- Associativity: For all $a, b, c \in G$, we have $(a \bullet b) \bullet c=a \bullet(b \bullet c)$
- Identity: There exists an element e such that for all $a \in G$, we have $e \bullet a=a$
- Inverse: For every $a \in G$, there exists $b \in G$ such that $a \bullet b=e$
- Think: Is $a \bullet b$ always equal to $b \bullet a$?
- Read: Abelian Groups
- Think: Can there be different left and right identity elements?
- Think: Can there be different left and right inverses?
- Example: $(\mathbb{Z},+)$
- A group G is defined by a set of elements and an operation which maps two elements in the set to a third element
- (G, \bullet) is a group if it satisfies the following conditions:
- Closure: For all $a, b \in G$, we have $a \bullet b \in G$
- Associativity: For all $a, b, c \in G$, we have $(a \bullet b) \bullet c=a \bullet(b \bullet c)$
- Identity: There exists an element e such that for all $a \in G$, we have $e \bullet a=a$
- Inverse: For every $a \in G$, there exists $b \in G$ such that $a \bullet b=e$
- Think: Is $a \bullet b$ always equal to $b \bullet a$?
- Read: Abelian Groups
- Think: Can there be different left and right identity elements?
- Think: Can there be different left and right inverses?
- Example: $(\mathbb{Z},+)$
- Read: (Example) Symmetry Group

Cyclic Groups

- A group (G, \cdot) is a cyclic group if it is generated by a single element

Cyclic Groups

- A group (G, \cdot) is a cyclic group if it is generated by a single element
- That is: $G=\left\{1=e=g^{0}, g^{1}, \ldots, g^{n-1}\right\}$, where $|G|=n$

Cyclic Groups

- A group (G, \cdot) is a cyclic group if it is generated by a single element
- That is: $G=\left\{1=e=g^{0}, g^{1}, \ldots, g^{n-1}\right\}$, where $|G|=n$
- Written as: $G=\langle g\rangle$

Cyclic Groups

- A group (G, \cdot) is a cyclic group if it is generated by a single element
- That is: $G=\left\{1=e=g^{0}, g^{1}, \ldots, g^{n-1}\right\}$, where $|G|=n$
- Written as: $G=\langle g\rangle$
- Order of G: n

Discrete Logarithm Problem

- Let (G, \cdot) be a cyclic group of order 2^{n} with generator g

Discrete Logarithm Problem

- Let (G, \cdot) be a cyclic group of order 2^{n} with generator g
- Given $\left(g, b=g^{a}\right)$, where $a \stackrel{s}{\leftarrow}\left\{0, \ldots, 2^{n}-1\right\}$, it is hard to predict a

Computational Diffie-Hellman Assumption

- Let G be a cyclic group (G, \cdot) or order 2^{n} with generator g

Computational Diffie-Hellman Assumption

- Let G be a cyclic group (G, \cdot) or order 2^{n} with generator g
- Give $\left(g, g^{a}, g^{b}\right)$ to the adversary

Computational Diffie-Hellman Assumption

- Let G be a cyclic group (G, \cdot) or order 2^{n} with generator g
- Give $\left(g, g^{a}, g^{b}\right)$ to the adversary
- Hard to find $g^{a b}$

Decisional Diffie-Hellman Assumption

- Let (G, \cdot) be a cyclic group of order 2^{n} with generator g

Decisional Diffie-Hellman Assumption

- Let (G, \cdot) be a cyclic group of order 2^{n} with generator g
- Pick $b \stackrel{\Phi}{\leftarrow}\{0,1\}$

Decisional Diffie-Hellman Assumption

- Let (G, \cdot) be a cyclic group of order 2^{n} with generator g
- Pick $b \stackrel{\Phi}{\leftarrow}\{0,1\}$
- If $b=0$, send $\left(g, g^{a}, g^{b}, g^{a b}\right)$, where $a, b \stackrel{s}{\leftarrow}\left\{0, \ldots, 2^{n}-1\right\}$

Decisional Diffie-Hellman Assumption

- Let (G, \cdot) be a cyclic group of order 2^{n} with generator g
- Pick $b{ }_{\leftarrow}^{\leftarrow}\{0,1\}$
- If $b=0$, send $\left(g, g^{a}, g^{b}, g^{a b}\right)$, where $a, b \leftarrow_{\leftarrow}^{\leftarrow}\left\{0, \ldots, 2^{n}-1\right\}$
- If $b=1$, send $\left(g, g^{a}, g^{b}, g^{r}\right)$, where $a, b, r \stackrel{\$}{\leftarrow}\left\{0, \ldots, 2^{n}-1\right\}$

Decisional Diffie-Hellman Assumption

- Let (G, \cdot) be a cyclic group of order 2^{n} with generator g
- Pick $b \stackrel{\Phi}{\leftarrow}\{0,1\}$
- If $b=0$, send $\left(g, g^{a}, g^{b}, g^{a b}\right)$, where $a, b \leftarrow_{\leftarrow}^{\leftarrow}\left\{0, \ldots, 2^{n}-1\right\}$
- If $b=1$, send $\left(g, g^{a}, g^{b}, g^{r}\right)$, where $a, b, r \stackrel{\$}{\leftarrow}\left\{0, \ldots, 2^{n}-1\right\}$
- Adversary has to guess b

Decisional Diffie-Hellman Assumption

- Let (G, \cdot) be a cyclic group of order 2^{n} with generator g
- Pick $b \stackrel{\Phi}{\leftarrow}\{0,1\}$
- If $b=0$, send $\left(g, g^{a}, g^{b}, g^{a b}\right)$, where $a, b \leftarrow_{\leftarrow}^{\leftarrow}\left\{0, \ldots, 2^{n}-1\right\}$
- If $b=1$, send $\left(g, g^{a}, g^{b}, g^{r}\right)$, where $a, b, r \leftarrow^{\varsigma}\left\{0, \ldots, 2^{n}-1\right\}$
- Adversary has to guess b
- Effectively: $\left(g, g^{a}, g^{b}, g^{a b}\right) \approx\left(g, g^{a}, g^{b}, g^{r}\right)$, for $a, b, r \stackrel{\Phi}{\leftarrow}\left\{0, \ldots, 2^{n}-1\right\}$ and any g

DDH $\Longrightarrow \mathrm{CDH} \Longrightarrow \mathrm{DL}$

- Alice picks a local randomness r_{A}
- Alice picks a local randomness r_{A}
- Bob picks a local randomness r_{B}
- Alice picks a local randomness r_{A}
- Bob picks a local randomness r_{B}
- Alice and Bob engage in a protocol and generate the transcript τ
- Alice picks a local randomness r_{A}
- Bob picks a local randomness r_{B}
- Alice and Bob engage in a protocol and generate the transcript τ
- Alice's view $V_{A}=\left(r_{A}, \tau\right)$ and Bob's view $V_{B}=\left(r_{B}, \tau\right)$

Key Agreement: Definition

- Alice picks a local randomness r_{A}
- Bob picks a local randomness r_{B}
- Alice and Bob engage in a protocol and generate the transcript τ
- Alice's view $V_{A}=\left(r_{A}, \tau\right)$ and Bob's view $V_{B}=\left(r_{B}, \tau\right)$
- Eavesdropper's view $V_{E}=\tau$

Key Agreement: Definition

- Alice picks a local randomness r_{A}
- Bob picks a local randomness r_{B}
- Alice and Bob engage in a protocol and generate the transcript τ
- Alice's view $V_{A}=\left(r_{A}, \tau\right)$ and Bob's view $V_{B}=\left(r_{B}, \tau\right)$
- Eavesdropper's view $V_{E}=\tau$
- Alice outputs k_{A} as a function of V_{A} and Bob outputs k_{B} as a function of V_{B}

Key Agreement: Definition

- Alice picks a local randomness r_{A}
- Bob picks a local randomness r_{B}
- Alice and Bob engage in a protocol and generate the transcript τ
- Alice's view $V_{A}=\left(r_{A}, \tau\right)$ and Bob's view $V_{B}=\left(r_{B}, \tau\right)$
- Eavesdropper's view $V_{E}=\tau$
- Alice outputs k_{A} as a function of V_{A} and Bob outputs k_{B} as a function of V_{B}
- Correctness: $\operatorname{Pr}_{r_{A}, r_{B}}\left[k_{A}=k_{B}\right] \approx 1$

Key Agreement: Definition

- Alice picks a local randomness r_{A}
- Bob picks a local randomness r_{B}
- Alice and Bob engage in a protocol and generate the transcript τ
- Alice's view $V_{A}=\left(r_{A}, \tau\right)$ and Bob's view $V_{B}=\left(r_{B}, \tau\right)$
- Eavesdropper's view $V_{E}=\tau$
- Alice outputs k_{A} as a function of V_{A} and Bob outputs k_{B} as a function of V_{B}
- Correctness: $\operatorname{Pr}_{r_{A}, r_{B}}\left[k_{A}=k_{B}\right] \approx 1$
- Security: $\left(k_{A}, V_{E}\right) \equiv\left(k_{B}, \tau\right) \approx(r, \tau)$

Key Agreement: Construction (Diffie-Hellman)

- Let (G, \cdot) be a cyclic group of order 2^{n} with generator g

Key Agreement: Construction (Diffie-Hellman)

- Let (G, \cdot) be a cyclic group of order 2^{n} with generator g
- Alice picks $a \stackrel{\$}{\leftarrow}\left\{0, \ldots, 2^{n}-1\right\}$ and sends g^{a} to Bob

Key Agreement: Construction (Diffie-Hellman)

- Let (G, \cdot) be a cyclic group of order 2^{n} with generator g
- Alice picks $a \stackrel{\$}{\leftarrow}\left\{0, \ldots, 2^{n}-1\right\}$ and sends g^{a} to Bob
- Bob picks $b \stackrel{\Phi}{\leftarrow}\left\{0, \ldots, 2^{n}-1\right\}$ and sends g^{b} to Alice

Key Agreement: Construction (Diffie-Hellman)

- Let (G, \cdot) be a cyclic group of order 2^{n} with generator g
- Alice picks $a \stackrel{\$}{\leftarrow}\left\{0, \ldots, 2^{n}-1\right\}$ and sends g^{a} to Bob
- Bob picks $b \stackrel{\Phi}{\leftarrow}\left\{0, \ldots, 2^{n}-1\right\}$ and sends g^{b} to Alice
- Alice outputs $\left(g^{b}\right)^{a}$ and Bob outputs $\left(g^{a}\right)^{b}$

Key Agreement: Construction (Diffie-Hellman)

- Let (G, \cdot) be a cyclic group of order 2^{n} with generator g
- Alice picks $a \stackrel{\$}{\leftarrow}\left\{0, \ldots, 2^{n}-1\right\}$ and sends g^{a} to Bob
- Bob picks $b \stackrel{\Phi}{\leftarrow}\left\{0, \ldots, 2^{n}-1\right\}$ and sends g^{b} to Alice
- Alice outputs $\left(g^{b}\right)^{a}$ and Bob outputs $\left(g^{a}\right)^{b}$
- Adversary sees: $\left(g^{a}, g^{b}\right)$

Key Agreement: Construction (Diffie-Hellman)

- Let (G, \cdot) be a cyclic group of order 2^{n} with generator g
- Alice picks $a \stackrel{\$}{\leftarrow}\left\{0, \ldots, 2^{n}-1\right\}$ and sends g^{a} to Bob
- Bob picks $b \stackrel{\Phi}{\leftarrow}\left\{0, \ldots, 2^{n}-1\right\}$ and sends g^{b} to Alice
- Alice outputs $\left(g^{b}\right)^{a}$ and Bob outputs $\left(g^{a}\right)^{b}$
- Adversary sees: $\left(g^{a}, g^{b}\right)$
- Correctness?

Key Agreement: Construction (Diffie-Hellman)

- Let (G, \cdot) be a cyclic group of order 2^{n} with generator g
- Alice picks $a \stackrel{\$}{\leftarrow}\left\{0, \ldots, 2^{n}-1\right\}$ and sends g^{a} to Bob
- Bob picks $b \stackrel{\leftarrow}{\leftarrow}\left\{0, \ldots, 2^{n}-1\right\}$ and sends g^{b} to Alice
- Alice outputs $\left(g^{b}\right)^{a}$ and Bob outputs $\left(g^{a}\right)^{b}$
- Adversary sees: $\left(g^{a}, g^{b}\right)$
- Correctness?
- Security? Use DDH to say that $g^{a b}$ is perfectly hidden from it
- Key Generation: Alice generates $(s k, p k) \stackrel{\varsigma}{\leftarrow} \operatorname{Gen}\left(1^{n}\right)$
- Key Generation: Alice generates $(s k, p k) \stackrel{\S}{\leftarrow} \operatorname{Gen}\left(1^{n}\right)$
- Alice announces pk
- Key Generation: Alice generates $(s k, p k) \stackrel{\varsigma}{\leftarrow} \operatorname{Gen}\left(1^{n}\right)$
- Alice announces pk
- Encryption: Bob computes $c \stackrel{\S}{\leftarrow} \operatorname{Enc}(m, p k)$
- Key Generation: Alice generates $(s k, p k) \stackrel{\S}{\leftarrow} \operatorname{Gen}\left(1^{n}\right)$
- Alice announces pk
- Encryption: Bob computes $c \stackrel{\S}{\leftarrow} \operatorname{Enc}(m, p k)$
- Correctness: Alice computes $m=\operatorname{Dec}(c, s k)$

Public-key Encryption

- Key Generation: Alice generates $(s k, p k) \stackrel{\varsigma}{\leftarrow} \operatorname{Gen}\left(1^{n}\right)$
- Alice announces pk
- Encryption: Bob computes $c \stackrel{\S}{\leftarrow} \operatorname{Enc}(m, p k)$
- Correctness: Alice computes $m=\operatorname{Dec}(c, s k)$
- Security: Given $(p k, c)$ the message seems uniformly random

2-round $K A \Longrightarrow P K E$

- Use the key as a one-time pad

2-round $K A \Longrightarrow P K E$

- Use the key as a one-time pad
- Formalize this intuition

