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Groups

A group G is defined by a set of elements and an operation
which maps two elements in the set to a third element

(G , •) is a group if it satisfies the following conditions:

Closure: For all a, b ∈ G , we have a • b ∈ G
Associativity: For all a, b, c ∈ G , we have
(a • b) • c = a • (b • c)
Identity: There exists an element e such that for all a ∈ G , we
have e • a = a
Inverse: For every a ∈ G , there exists b ∈ G such that
a • b = e

Think: Is a • b always equal to b • a?

Read: Abelian Groups

Think: Can there be different left and right identity elements?
Think: Can there be different left and right inverses?
Example: (Z,+)

Read: (Example) Symmetry Group
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Cyclic Groups

A group (G , ·) is a cyclic group if it is generated by a single
element

That is: G =
{
1 = e = g0, g1, . . . , gn−1}, where |G | = n

Written as: G = 〈g〉
Order of G : n
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Discrete Logarithm Problem

Let (G , ·) be a cyclic group of order 2n with generator g

Given (g , b = ga), where a
$←{0, . . . , 2n − 1}, it is hard to

predict a
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Computational Diffie-Hellman Assumption

Let G be a cyclic group (G , ·) or order 2n with generator g

Give (g , ga, gb) to the adversary
Hard to find gab
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Decisional Diffie-Hellman Assumption

Let (G , ·) be a cyclic group of order 2n with generator g

Pick b
$←{0, 1}

If b = 0, send (g , ga, gb, gab), where a, b
$←{0, . . . , 2n − 1}

If b = 1, send (g , ga, gb, g r ), where a, b, r
$←{0, . . . , 2n − 1}

Adversary has to guess b
Effectively: (g , ga, gb, gab) ≈ (g , ga, gb, g r ), for
a, b, r

$←{0, . . . , 2n − 1} and any g
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Relationship

DDH =⇒ CDH =⇒ DL
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Key Agreement: Definition

Alice picks a local randomness rA

Bob picks a local randomness rB
Alice and Bob engage in a protocol and generate the transcript
τ

Alice’s view VA = (rA, τ) and Bob’s view VB = (rB , τ)

Eavesdropper’s view VE = τ

Alice outputs kA as a function of VA and Bob outputs kB as a
function of VB

Correctness: PrrA,rB [kA = kB ] ≈ 1
Security: (kA,VE ) ≡ (kB , τ) ≈ (r , τ)
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Key Agreement: Construction (Diffie-Hellman)

Let (G , ·) be a cyclic group of order 2n with generator g

Alice picks a $←{0, . . . , 2n − 1} and sends ga to Bob

Bob picks b $←{0, . . . , 2n − 1} and sends gb to Alice
Alice outputs (gb)a and Bob outputs (ga)b

Adversary sees: (ga, gb)

Correctness?
Security? Use DDH to say that gab is perfectly hidden from it
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Public-key Encryption

Key Generation: Alice generates (sk, pk) $← Gen(1n)

Alice announces pk

Encryption: Bob computes c $← Enc(m, pk)
Correctness: Alice computes m = Dec(c , sk)
Security: Given (pk, c) the message seems uniformly random
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2-round KA =⇒ PKE

Use the key as a one-time pad

Formalize this intuition
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